Battery Booster Program

Click here to find out more about Battery Booster Program
Features Hybrid System Off-grid System On-grid System
Initial Investment High Medium Low
Grid Connection Yes Optional Yes
Energex/Ergon approval required Yes No Yes
Peak-shaving function Automatic No No
Net Metering (Sell excess electricity) Yes No Yes
Incentives & Rebates Battery booster program (conditions apply) Battery booster program (conditions apply) Often available (due to grid-tie benefits)
Battery Storage Yes Yes No
Energy storage costs Moderate to High (requires batteries) High (Relies heavily on battery storage) None
Backup during outages Yes Yes No
Generator backup Optional Yes No
Power availability High (can use grid or stored power) High Depends on grid availability
Remote monitoring Optional Optional Optional
Scalability Flexible Flexible Flexible
Best Suited For Areas with frequent power cuts or variable grid supply, those wanting the best of both worlds. Remote areas without grid access or those wanting complete energy independence. Areas with stable grid supply. Those wanting to reduce electricity bills.

How Hybrid Solar Systems Work?

Hybrid solar systems operate in a sophisticated yet user-friendly manner. They seamlessly integrate solar panels, a hybrid inverter, and a battery bank to provide a continuous supply of electricity. During the day, solar panels capture sunlight and convert it into DC electricity. This DC electricity is then sent to the hybrid inverter, which performs two crucial roles: it converts DC to AC electricity for immediate use in your home, and it manages the charging of the battery bank with excess electricity.

When your solar panels produce more electricity than your home needs, the surplus is used to charge the battery bank. Once the battery bank is fully charged, any additional excess electricity is sent back to the grid, earning you credits on your electricity bill in areas with net metering policies. Conversely, during the night or cloudy days when solar generation is low, the battery bank discharges stored electricity to power your home. And if the battery bank runs low, you can draw electricity from the grid.

Components of a Hybrid Solar System

Solar Panels

Solar panels are the cornerstone of any solar energy setup, including hybrid solar systems. They are installed in open areas with ample sunlight, such as rooftops or backyards. Each solar panel consists of many solar cells made from semiconductor materials like silicon. When sunlight hits these cells, it excites the electrons in them, creating an electric current. This process of converting sunlight into electricity is known as the photovoltaic effect. The electricity generated by solar panels is in direct current (DC) form, which is then sent to the hybrid inverter for conversion into alternating current (AC) suitable for home use.​

Hybrid Inverter

The hybrid inverter is a critical component that differentiates hybrid solar systems from other solar setups. It serves two main purposes: converting DC electricity from solar panels to AC electricity for home use and managing the charging and discharging of the battery bank. Unlike traditional inverters, hybrid inverters have the capability to interact with both the grid and the battery bank, ensuring a seamless flow of electricity based on your needs. When excess electricity is generated, it either charges the battery bank or is sent back to the grid. During power outages or at times when solar generation is low, the battery bank can discharge stored electricity, ensuring a continuous power supply.​

Battery Bank

​The battery bank in a hybrid solar system stores excess electricity generated by solar panels for later use. This feature is particularly useful during the night when the sun is down, or during power outages, providing a reliable backup power source. The capacity of the battery bank is crucial as it determines how much electricity can be stored and consequently, how long your home can be powered during off-grid scenarios. Modern battery systems use lithium-ion technology, known for its higher energy density and longer lifespan compared to older battery technologies. The hybrid inverter manages the charging and discharging process of the battery bank, ensuring optimal performance and longevity of the system.​

Mounting Hardware​

Mounting hardware is essential for securing solar panels either on the roof or on the ground, ensuring they are positioned at the correct angle to capture maximum sunlight. The mounting structure needs to be robust to withstand various weather conditions and should be designed to provide optimal tilt and orientation to the solar panels, maximizing energy generation over time.​

On-grid and Off-grid Capabilities​

One of the hallmark features of hybrid solar systems is their ability to operate both on-grid and off-grid. This dual functionality is enabled by the hybrid inverter, which intelligently manages the flow of electricity between the solar panels, battery bank, and the grid.

On-grid operation allows you to benefit from the grid’s reliability while also taking advantage of solar power to reduce your electricity bills. In some regions, you can also earn credits for the excess electricity you feed back into the grid, further offsetting your energy costs.

Off-grid operation, on the other hand, is a lifesaver during power outages. When the grid goes down, the hybrid inverter isolates your system from the grid (a process known as islanding) and switches to off-grid mode. In this mode, your home is powered by the electricity stored in the battery bank and generated by your solar panels.

This flexible operation makes hybrid solar systems a highly appealing choice for homeowners seeking energy independence, reliability, and cost savings. By allowing you to use solar power, store it, and remain connected to the grid, hybrid solar systems provide a versatile solution for modern energy needs

Advantages of Hybrid Solar Systems

Energy Independence

One of the major advantages of hybrid solar systems is the level of energy independence they offer. By storing excess solar energy in a battery bank for later use, homeowners can reduce their reliance on the grid. This is particularly beneficial during power outages or in regions with unstable grid electricity. The ability to use stored solar energy when needed provides a sense of energy security and peace of mind.

Cost-effectiveness

Hybrid solar systems can be a cost-effective solution in the long run. They help in reducing electricity bills by maximizing the use of solar energy. Additionally, in regions with net metering policies, homeowners can earn credits for the excess electricity fed back into the grid, further lowering their energy costs. The smart features in hybrid inverters also allow for load shifting and peak shaving, which can lead to additional savings, especially in areas with time-of-use electricity pricing.

Seamless Transition between Grid and Battery

The hybrid inverter’s capability to manage the flow of electricity between the solar panels, battery bank, and the grid ensures a seamless transition between on-grid and off-grid operation. This seamless transition is crucial during power outages, ensuring that your home remains powered without any interruption. The hybrid inverter automatically switches to off-grid mode during a power outage, utilizing the stored energy in the battery bank to power your home.

Increased Property Value

Solar installations, especially hybrid systems with battery storage, are seen as valuable additions to homes. They not only promise reduced electricity bills but also provide a modern, eco-friendly, and reliable energy solution, factors that can enhance property value.

Disadvantages of Hybrid Solar Systems

Initial Cost​

The upfront cost of installing a hybrid solar system can be higher compared to traditional on-grid solar systems. This is primarily due to the inclusion of a battery storage system and a more complex hybrid inverter. The cost of the battery bank can significantly impact the overall price of the hybrid solar system. Moreover, the quality and capacity of the battery bank chosen will also play a role in the initial investment required.

The new Battery Booster Program helps to reduce the cost of a hybrid system by up to 30%

Technical Complexity

Hybrid solar systems are more technically complex compared to standard on-grid solar systems. The integration of a battery storage system and a hybrid inverter that can manage both grid interaction and battery charging/discharging adds layers of complexity. This technical complexity may require specialized installation and maintenance services, which could potentially incur additional costs over time.

Battery Replacement and Maintenance

The battery bank in a hybrid solar system has a limited lifespan and will require replacement at some point, typically every 10 to 15 years depending on the technology and usage. The cost of replacing the battery bank can be substantial. Additionally, batteries may require maintenance to ensure they operate efficiently and safely, adding to the ongoing costs of the system.

Permitting and Grid Interconnection

In some regions, the process of getting the necessary permits and approvals for installing a hybrid solar system, especially the battery storage component, can be lengthy and challenging. Moreover, the requirements for grid interconnection and the availability of net metering or other incentives can vary widely, potentially impacting the feasibility and cost-effectiveness of hybrid solar systems.

Sizing a Hybrid Solar System

Importance of Correct Sizing

Sizing a hybrid solar system accurately is pivotal for its efficiency and cost-effectiveness. The size of your solar panel array, hybrid inverter, and battery bank needs to be tailored to your home’s energy needs to ensure you harness and store enough solar energy. Correct sizing not only meets your electricity requirements but also maximizes the return on your investment

Factors to Consider

Energy Consumption:

Analysing your household’s energy consumption is the starting point for sizing a hybrid solar system. It’s essential to understand your daily and seasonal electricity usage patterns. Your electricity bills over the past year can provide valuable insights into your energy consumption trends.

Solar Energy Potential:

The amount of sunlight your location receives significantly impacts the size of the solar system you’ll need. It’s crucial to assess the solar energy potential in your area, considering factors like shading, the angle of your roof, and local weather patterns.

Battery Storage Capacity:

The capacity of the battery bank determines how much excess solar energy you can store for later use. A larger battery bank allows for more storage, providing a more reliable backup during cloudy days or power outages. However, it also comes with a higher price tag.

Peak Electricity Demand:

Understanding your home’s peak electricity demand helps in sizing the battery bank and the inverter. It ensures that your hybrid solar system can handle your electricity needs during peak usage times.

Future Energy Needs:

Anticipating any changes in your future energy consumption, like adding electric vehicles or new appliances, is crucial when sizing your hybrid solar system. It’s wise to plan for future energy needs to avoid the necessity of upgrading your system shortly after installation.

Local Regulations and Incentives:

Local regulations may dictate certain aspects of your hybrid solar system’s size, like the maximum allowed system capacity. Moreover, understanding the available incentives and subsidies for solar and battery storage in your area can impact the economic feasibility of different system sizes.

Sizing a hybrid solar system is a nuanced task that requires a thorough understanding of your energy needs, local solar conditions, and financial considerations. It’s advisable to consult with experienced solar installers or use advanced solar calculators to get an accurate sizing for your hybrid solar system.

Installation Considerations

Placement of Solar Panels

The placement of solar panels is crucial for maximizing energy generation. Solar panels should be installed in locations with minimal shading and optimal sun exposure throughout the day. The angle and orientation of the panels also significantly affect their energy-harvesting efficiency. In the northern hemisphere, solar panels are typically oriented towards the south, and vice versa in the southern hemisphere, to capture the maximum sunlight. Professional solar installers can provide valuable insights and recommendations on the best placement of solar panels based on your location and roof characteristics.

Wiring and Integration

Proper wiring and integration are essential for the safety and efficiency of your hybrid solar system. High-quality cables and connectors should be used to ensure minimal energy loss and to prevent potential electrical hazards. The integration of the solar panels, hybrid inverter, and battery bank needs to be done correctly to ensure seamless operation of the system. It’s advisable to hire experienced solar installers who are knowledgeable about local electrical codes and standards to ensure a safe and efficient installation.

Battery Placement

The placement of the battery bank is another critical consideration. Batteries should be installed in a clean, dry, and well-ventilated area to ensure they operate efficiently and have a long lifespan. It’s also essential to follow the manufacturer’s instructions and local electrical codes regarding battery placement and enclosure to ensure safety.

Monitoring System Installation

Installing a monitoring system allows you to track the performance of your hybrid solar system in real-time. Monitoring systems provide valuable data on energy generation, consumption, and battery status, enabling you to optimize your energy usage and detect any issues early.

Maintenance and Monitoring

Regular maintenance is key to ensuring the longevity and efficiency of your hybrid solar system. Routine checks should be conducted to inspect the physical condition of solar panels, mounting hardware, and cables for any signs of damage or wear. It’s also advisable to keep the solar panels clean from dust, dirt, bird droppings, and other debris that can obstruct sunlight and reduce energy generation. The battery bank and hybrid inverter should also be inspected for any abnormalities, ensuring they are operating correctly.

Performance monitoring is crucial for optimizing the use of your hybrid solar system. Modern hybrid solar systems often come with monitoring software that allows you to track energy generation, consumption, and battery status in real-time. Monitoring systems provide valuable insights into how your solar system is performing, helping you identify any issues early and make informed decisions to optimize your energy usage. Understanding the data provided by the monitoring system can also help you detect any underperformance issues that may require professional troubleshooting.

Battery maintenance is crucial for ensuring a long lifespan and optimal performance. Depending on the type of battery technology used, maintenance requirements may vary. For example, lithium-ion batteries generally require less maintenance compared to lead-acid batteries. Following the manufacturer’s maintenance guidelines and ensuring the battery bank is operating within the recommended temperature range can significantly impact its performance and lifespan.

Conclusion

Hybrid solar systems present a compelling solution for modern energy needs, bridging the gap between on-grid and off-grid solar systems. They offer the reliability of grid connection while providing the independence of energy storage, ensuring a continuous power supply even during grid outages. Through a combination of solar panels, a sophisticated hybrid inverter, and a battery bank, hybrid solar systems harness solar energy efficiently, store it for later use, and manage the energy flow seamlessly.

Recommendations for Prospective Users

For those considering investing in a hybrid solar system, thorough research and careful planning are crucial. Understanding your energy needs, the solar potential of your location, and the local regulations and incentives can significantly impact the success of your solar project. Consulting with professional solar installers, exploring various financing options, and considering future energy needs are essential steps in the journey towards harnessing solar energy through a hybrid solar system.

Moreover, embracing the monitoring and maintenance aspects of hybrid solar systems will ensure their longevity and optimal performance, maximizing the return on your investment. Staying updated on technological advancements and policy changes in the renewable energy sector can also provide valuable insights and opportunities to enhance the benefits of your hybrid solar system.

An off-grid system operates independently without being connected to the electricity grid, requiring batteries to store power. These systems must be well-designed to produce sufficient energy throughout the year, especially in winter with less sunlight.

Off-grid solar systems are more expensive than on-grid systems because of the high cost of batteries and inverters.

They are typically used in remote areas far from the grid, but as battery costs decrease, there is a growing market for off-grid solar systems, even in cities and towns.

AC-coupled off-grid solar systems use a solar inverter and multi-mode battery inverter. There are different types of off-grid systems, including AC-coupled and DC-coupled systems.

In DC-coupled systems, a solar charge controller manages battery charging, and DC power is converted to AC using an off-grid inverter for home appliances.

In an off-grid system, there is no public electricity grid. Appliances use Solar power directly, storing extra energy in a battery bank.

When the battery is complete, the system reduces solar power usage. Appliances run on battery power at night or when the solar system isn’t generating power.

When batteries are low, or the weather is cloudy for several days, a backup power source like a generator is needed. The generator size should be sufficient to power the house and charge the batteries simultaneously.

Shopping Cart
Scroll to Top